首页> 外文OA文献 >Adaptive non-Zero Mean Gaussian Detection and Application to Hyperspectral Imaging
【2h】

Adaptive non-Zero Mean Gaussian Detection and Application to Hyperspectral Imaging

机译:自适应非零均值高斯检测及其应用   高光谱成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classical target detection schemes are usually obtained deriving thelikelihood ratio under Gaussian hypothesis and replacing the unknown backgroundparameters by their estimates. In most applications, interference signals areassumed to be Gaussian with zero mean or with a known mean vector that can beremoved and with unknown covariance matrix. When mean vector is unknown, it hasto be jointly estimated with the covariance matrix, as it is the case forinstance in hyperspectral imaging. In this paper, the adaptive versions of theclassical Matched Filter and the Normalized Matched Filter, as well as twoversions of the Kelly detector are first derived and then are analyzed for thecase when the mean vector of the background is unknown. More precisely,theoretical closed-form expressions for false-alarm regulation are derived andthe Constant False Alarm Rate property is pursued to allow the detector to beindependent of nuisance parameters. Finally, the theoretical contribution isvalidated through simulations and on real hyperspectral scenes.
机译:典型的经典目标检测方案通常是在高斯假设下得出似然比并用其估计值代替未知背景参数而获得的。在大多数应用中,干扰信号区域被认为是具有零均值或具有可被去除且具有未知协方差矩阵的已知均值矢量的高斯信号。当均值向量未知时,必须与协方差矩阵一起进行估计,就像高光谱成像中的情况一样。本文首先推导了经典匹配滤波器和归一化匹配滤波器的自适应版本,以及凯利检测器的二次版本,然后针对背景均值未知的情况进行了分析。更精确地,推导了用于错误警报调节的理论上的闭式表达式,并追求“恒定错误警报率”属性,以使检测器不受干扰参数的影响。最后,通过仿真和在真实的高光谱场景上验证了理论贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号